Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 305(2): 254-264, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34358403

RESUMO

Bilirubin encephalopathy (BE) is a neurological syndrome in newborns, mainly caused by neuronal injury due to excessive oxidative stress produced by unconjugated bilirubin (UCB). Neuroglobin (NGB) can protect the brain by removing oxidative stress species, but its expression and significance in BE are not clear. To address this question, the neonatal BE model was established by injecting UCB into the cerebellomedullary cistern of 7-day-old SD rats. Rats were divided into a sham and BE 6 hr group, BE 12 hr group, BE 24 hr group, and BE 7 d group according to UCB action times. Hematoxylin/eosin and Nissl staining, and electron microscopy were employed to observe the pathological and ultrastructural changes of nerve cells in each group. Immunofluorescence staining was used to detect NGB expression sites and cell types. Western blotting and quantitative PCR served to detect NGB expression and test the mitochondrial apoptosis signal pathway. The results confirm that UCB can lead to pathological damage and ultrastructural changes in rats' temporal cortex, increasing the expression of apoptosis-related proteins Bax, Bcl-2, Cyt c, Caspase-3, and neuronal NGB. UCB promotes NGB expression with an increase in action time and reach a peak at 12 hr. In summary, brain damage induced by UCB will cause an increase in NGB expression, the increasing NGB can inhibit neuron apoptosis in early BE phases. Therefore, promoting the expression of endogenous NGB, to act as a neuroprotective agent may be a potential treatment strategy for BE.


Assuntos
Globinas , Kernicterus , Animais , Globinas/genética , Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Ratos , Ratos Sprague-Dawley , Lobo Temporal/metabolismo
2.
Genes Dis ; 6(4): 398-406, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832520

RESUMO

This study aimed to assess the role of microRNAs (miRNAs) in regulating monocarboxylate transporter-1 (MCT1) expression in rat brain after permanent focal cerebral ischemia to identify a new target for early treatment of cerebral ischemia. Focal cerebral ischemia was induced by permanent middle cerebral artery occlusion (pMCAO) in rats. Morphology and protein expression levels of MCT1 were assessed by immunofluorescence and Western blotting. Using bioinformatics and double luciferase reporter assays, rno-miR-124-3p was selected as a direct target for rat MCT1. Expression of rno-miR-124-3p after pMCAO was detected. Then, rats were treated with rno-miR-124-3p agomir via lateral ventricle injection, and after 6 h or 24 h ischemia, rno-miR-124-3p expression and gene and protein expression of MCT-1 were detected by qRT-PCR and Western blotting. Brain infarction was identified by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. Results showed that pMCAO induced brain infarction and increased the expression of MCT1. The levels of rno-miR-124-3p after pMCAO were in contrast to those of MCT1 protein in ischemic region, while declined after 3, 6 and 12 h of pMCAO in ischemic penumbra. After administration of rno-miR-124-3p agomir, MCT1 mRNA and protein levels were increased after 6 h of pMCAO, while decreased after 24 h of pMCAO. Meanwhile, rno-miR-124-3p levels increased after both times. TTC staining showed treatment with rno-miR-124-3p agomir reduced brain infarction. The role of rno-miR-124-3p in regulating MCT1 was as a positive regulator after 6 h of pMCAO, while a negative regulator after 24 h of pMCAO, however, both activities had protective effects against cerebral ischemia.

3.
Anat Rec (Hoboken) ; 302(2): 332-338, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30312017

RESUMO

Curcumin is a natural product with several anti-Alzheimer's disease (AD) neuroprotective properties. This study aimed to investigate the effects of curcumin on memory deficits, lactate content, and monocarboxylate transporter 2 (MCT2) in APP/PS1 mouse model of AD. APP/PS1 transgenic mice and wild-type (WT) C57BL/6J mice were used in the present study. Spatial learning and memory of the mice was detected using Morris water-maze test. Cerebral cortex and hippocampus lactate contents were detected using lactate assay. MCT2 expression in the cerebral cortex and hippocampus was examined by immunohistochemistry and Western blotting. Results showed that spatial learning and memory deficits were improved in curcumin-treated APP/PS1 mouse group compared with those in APP/PS1 mice group. Brain lactate content and MCT2 protein level were increased in curcumin-treated APP/PS1 mice than in APP/PS1 mice. In summary, our findings indicate that curcumin could ameliorate memory impairments in APP/PS1 mouse model of AD. This phenomenon may be at least partially due to its improving effect on the lactate content and MCT2 protein expression in the brain. Anat Rec, 302:332-338, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Doença de Alzheimer/complicações , Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/farmacologia , Modelos Animais de Doenças , Ácido Láctico/metabolismo , Transtornos da Memória/prevenção & controle , Transportadores de Ácidos Monocarboxílicos/metabolismo , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Feminino , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética
4.
Brain Res ; 1539: 61-72, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24070677

RESUMO

The membrane-bound water channel aquaporin-4 (AQP4) plays a significant role in maintaining brain water homeostasis. In ischemic brain, changes in the expression level of AQP4 have been reported. Previous studies suggest that the internalization of several membrane-bound proteins, including AQP4, may occur with or without lysosomal degradation. In this study, the internalization of AQP4 was detected in the ischemic rat brain via double immunofluorescence labeling. Specifically, AQP4 and early endosome antigen-1 (EEA1) co-localized after 1 h post-ischemic injury. Moreover, the co-expression of AQP4 and lysosomal-associated membrane protein-1 (LAMP1) was observed after 3 h post-ischemia. These findings suggest that AQP4 is internalized and the lysosome is involved in degrading the internalized AQP4 in the ischemic brain. AQP4 is known to be downregulated by the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) in vivo and in vitro. The results in this study displayed that PMA infusion could decrease brain edema accompanied by AQP4 downregulation in ischemic brain. However, compared with vehicle infusion, PKC activator infusion did not increase the ratio of internalized or lysosomal degraded AQP4. That is, we have not found out evidence to prove protein kinase C activator PMA can promote the internalization or lysosomal degradation of AQP4 in the ischemic brain.


Assuntos
Aquaporina 4/metabolismo , Isquemia Encefálica/metabolismo , Lisossomos/metabolismo , Animais , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Isquemia Encefálica/patologia , Feminino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia
5.
Biochem Biophys Res Commun ; 440(1): 168-72, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24055034

RESUMO

Aquaporin8 (AQP8), a member of the aquaporin (AQP) protein family, is weakly distributed in mammalian brains. Previous studies on AQP8 have focused mainly on the digestive and the reproductive systems. AQP8 has a pivotal role in keeping the fluid and electrolyte balance. In this study, we investigated the expression changes of AQP8 in 75 cases of human brain astrocytic tumors using immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction. The results demonstrated that AQP8 was mainly distributed in the cytoplasm of astrocytoma cells. The expression levels and immunoreactive score of AQP8 protein and mRNA increased in low-grade astrocytomas, and further increased in high-grade astrocytomas, especially in glioblastoma. Therefore, AQP8 may contribute to the proliferation of astrocytomas, and may be a biomarker and candidate therapy target for patients with astrocytomas.


Assuntos
Aquaporinas/genética , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Adolescente , Adulto , Idoso , Aquaporinas/análise , Encéfalo/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , RNA Mensageiro/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...